Spoločnosť Hansgrohe, známa svojimi inovatívnymi riešeniami kúpeľní a kuchýň, rozšírila ponuku svojich produktov nad rámec tradičných batérií a...
Moderná architektúra založená na využití skla redefinuje vnímanie životného priestoru.
Ak hľadáte pre realizáciu svojich návrhov partnera, ktorý sa vie prispôsobiť náročným požiadavkám, tak nasledujúce riadky sú určené pre Vás.
Odolná konštrukcia zaručuje dlhoročné bezproblémové používanie,...
Európska značka okien číslo jeden rozširuje svoj sortiment o nové drevohliníkové okno HF 520 s plošne...
Spoločnosť Milt nielen sleduje súčasné trendy, ale aktívne prispieva aj k ich tvorbe.
Princíp je jednoduchý. Semipermeabilná (polopriepustná) membrána oddeľuje dve kvapaliny s rôznou koncentráciou soli. Ióny soli môžu putovať cez membránu, kým sa koncentrácia v oboch tekutinách dostane do rovnovážneho stavu. Tento jav sa nazýva osmóza.
Ak sa v systéme použijú aj bežné kvapaliny, ktorých máme dostatok - napr. morská a riečna voda, ióny soli z morskej vody prechádzať cez membránu do neslanej vody, až kým obe tekutiny budú mať rovnakú koncentráciu soli. Pretože ión je atóm s elektrickým nábojom, pohyb iónov soli sa dá využiť na výrobu elektrickej energie.
Základom efektivity je špeciálna ultratenká membrána oddeľujúca obidva roztoky. Dvojkomorový systém so slanou a sladkou vodou oddelili výskumníci tenkou membránou zo sírnika molybdeničitého (MoS2). V membráne vytvorili malý otvor, cez ktorý prechádzajú kladné ióny zo slanej vody do sladkej. Väčšina záporných častíc je od otvoru odpudzovaná, a tak vzniká medzi kvapalinami elektrické napätie. To môže generovať elektrický prúd. Presne kalibrovaný otvor prepustí iba kladné ióny.
Dôležité bolo tiež, aby membrána bola čo najtenšia. V týchto typoch membrán platí, čím tenšia membrána - tým viac prúdu. Ideálnou sa ukazuje membrána skladajúca sa iba z 3 vrstiev atómov sulfidu molybdeničitého. (Je to prvýkrát, čo sa podarilo pre podobný účel vyrobiť takýto 2D materiál).
„Museli sme najprv zistiť, aká má byť optimálna veľkosť dierky v membráne. Ak je príliš veľká, mohli by cez ňu prejsť aj záporné ióny a výsledné napätie by bolo veľmi malé. Príliš malý otvor by zase neprepustil dostatok kladných iónov a elektrický prúd by bol slabý,“ komentoval technológiu vedúci výskumu Jiandong Feng.
Informáciu ako prvý priniesol univerzitný web. Štúdiu zverejnil aj vedecký žurnál Nature.
Výskumníci použili zatiaľ membránu s jediným nanopórom. Takto mohli celý proces lepšie preskúmať, a ukázať, že membrána s jediným nanopórom môže poháňať nanotranzistor. Cieľom je vyrobiť membrány s väčším počtom nanopórov rovnakej veľkosti. Potom by sa výroba osmotických generátorov mohla rozbehnúť masovo.
Ak by to v záplave informácií o nových alternatívnych zdrojoch energií bola pravda, tak potenciál nového systému je obrovský. Podľa výpočtov vedcov by 1 m2 membrány s 30 % svojho povrchu pokrytým nanopórmi bol schopný produkovať 1 MW elektrickej energie. Toto číslo je ťažko uveriteľné. (Stačilo by napríklad na napájanie 50 000 štandardných energeticky úsporných žiaroviek). Sírnika molybdeničitého je v prírode takisto dostatok (alebo sa dá získať aj chemickým naparovaním (chemical vapor deposition)), systém by sa mohol využiť na výrobu elektrickej energie vo veľkej miere a bol by aj lacný vzhľadom na potrebné "palivo" a suroviny.